Adaptive Real-Time Anomaly Detection with Fast Indexing and Ability to Forget

نویسندگان

  • Kalle Burbeck
  • Simin Nadjm-Tehrani
چکیده

Anomaly detection in IP networks, detection of deviations from what is considered normal, is an important complement to misuse detection based on known attack descriptions. Performing anomaly detection in real-time places hard requirements on the algorithms used. First, to deal with the massive data volumes one needs to have efficient data structures and indexing mechanisms. Secondly, the dynamic nature of today’s information networks makes the characterization of normal requests and services difficult. What is considered as normal during some time interval may be classified as abnormal in a new context, and vice versa. These factors make many proposed data mining techniques less suitable for real-time intrusion detection. In this paper we extend ADWICE, Anomaly Detection With fast Incremental Clustering. Accuracy of ADWICE classifications is improved by introducing a new grid-based index, and its ability to build models incrementally is extended by introducing forgetting. We evaluate the technique on the KDD data set as well as on data from a real (telecom) IP test network. The experiments show good detection quality and illustrate the usefulness of adapting to normality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavior-Based Online Anomaly Detection for a Nationwide Short Message Service

As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. Over time, users' interactions with the network provides a vast amount of usage data. Thes...

متن کامل

F-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management

Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...

متن کامل

Adaptive real-time anomaly detection with incremental clustering

Anomaly detection in information (IP) networks, detection of deviations from what is considered normal, is an important complement to misuse detection based on known attack descriptions. Performing anomaly detection in real-time places hard requirements on the algorithms used. First, to deal with the massive data volumes one needs to have efficient data structures and indexing mechanisms. Secon...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Real-time damage detection of bridges using adaptive time-frequency analysis and ANN

Although traditional signal-based structural health monitoring algorithms have been successfully employed for small structures, their application for large and complex bridges has been challenging due to non-stationary signal characteristics with a high level of noise. In this paper, a promising damage detection algorithm is proposed by incorporation of adaptive signal processing and Artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005